

Reversed word dictionary and phonetically similar word
grouping based spell-checker to Bangla text

Bidyut Baran Chaudhuri

Computer Vision and Pattern Recognition Unit
Indian Statistical Institute

203, Barrackpore Trunk Road
Kolkata 700035

India
Email: {bbc@isical.ac.in}

1

Abstract

A new novel technique of localisation and correction of non-word error is described. The technique
works in two stages. The first stage takes care of phonetic similarity error. For that the phonetically
similar characters are mapped into single units of character code. A new dictionary Dc is constructed
with this reduced set of alphabet. A phonetically similar but wrongly spelt word can be easily
corrected using this dictionary. The second stage takes care of errors other than phonetic similarity.
Here wrongly spelt word S of n characters is searched in the dictionary Dc. If S is a non-word, its first
k1 ≤ n characters will match with a valid word in Dc. (if k1 = n then the word in Dc must be longer
than n). A reversed word dictionary Dr is also generated where the characters of the word are
maintained in a reversed order. If the last k2 characters of S match with a word in Dr then, for single
error, it is located within the intersection region of first k1 + 1 and last k2 +1 characters of S. We
observed that this region is very small compared to word length for most cases and the number of
suggested correct words can be drastically reduced using this information. We have used our
approach in correcting Bangla text, where the problem of inflection is cleverly tackled.

2

1. Introduction

The problem of detecting error in words and automatically correcting them is a great research
challenge. Its solution has enormous application potentials in text and code editing, computer aided
authoring, optical character recognition (OCR), machine translation (MT), natural language
processing (NLP), database retrieval and information retrieval interface, speech recognition, text to
speech and speech to text conversion, communication system for the disabled (e.g. blind and deaf),
computer aided tutoring and language learning, desktop publication and pen-based computer
interface.

 The word-error can belong to one of the two distinct categories, namely, nonword error and
real-word error. Let a string of characters separated by spaces or punctuation marks be called a
candidate string. A candidate string is a valid word if it has a meaning. Else, it is a nonword. By real
word error we mean a valid but not the intended word in the sentence, thus making the sentence
syntactically or semantically ill-formed or incorrect. In both cases the problem is to detect the
erroneous word and either suggest correct alternatives or automatically replace it by the appropriate
word.

 There are several issues to be addressed in the error correction problem. The first issue
concerns the error patterns generated by different text generating media such as typewriter and
computer keyboard, typesetting and machine printing, OCR system, speech recognizer output, and of
course, handwriting. Usually, the error pattern of one media does not match with that of the other.
The error pattern issue of each media concerns the relative abundance of insertion, deletion,
substitution and transposition error, run-on and split word error, single versus multiple character
error, word length effect, positional bias, character shape effect, phonetic similarity effect, heuristic
tendencies etc. The knowledge about error pattern is necessary to model an efficient spell checker.

 Another important issue is the computerized dictionary which concerns the size of the
dictionary, the problem of inflection and creative morphology, the dictionary file structure, dictionary
partitioning, word access techniques and so on. Dictionary look up is one of the two principal ways of
spelling error detection and correction. The other approach, popularly used in OCR problems, is the
N-gram approach. Construction of appropriate N-gram from raw text data is an important issue in this
approach.

 The detection of real word error needs higher level knowledge compared to the detection of
nonword error. In fact, detection of real word error is a problem that needs NLP tools to solve. Quite
often, it is not possible to separate the problem of real error detection from that of correction.

 Even for nonword errors, correction is a nontrivial task. Several approaches based on
minimum edit distance, similarity key, rules, N-grams, probability and neural nets are proposed to
accomplish the task [1-8, 13, 14]. Of these, minimum edit distance based approaches are the most
popular ones. The minimum edit distance is the minimum number of editing operations (insertions,
deletions and substitutions) required to transform one text string into another. The distance is also
referred to as Damerau-Levenshtein distance after the pioneers who proposed it for text error
correction [4, 8]. In its original form, minimum edit distance algorithms require m comparisons
between misspelled string and the dictionary of m words. After comparison, the words with minimum
edit distance are chosen as correct alternatives. To improve the speed, a reverse minimum edit
distance is used where a candidate set of words is produced by first generating every possible single-
error permutation of the misspelled string and then checking the dictionary if any make up valid
word. For a brief description of other methods, see [7].

 Irrespective of the technique used, one of the aims of a spell-checker is to provide a small set
of correct alternatives for an erroneous string which includes the intended word. If the number of

3

correct alternatives becomes one then the correction can be done automatically. Even if the number is
small, it is manually convenient to choose the intended word form this small subset.

 The set of correct alternatives can be drastically reduced if the error detection algorithm can
pinpoint the position and nature of error (substitution or deletion etc.) occurred in the misspelled
string. Consider the case of single position error. Suppose the error detection algorithm could find
that the error has occurred at the k-th character position of a string. Suppose it could also find that
the error is a substitution type. Then we accept only those valid words formed by replacing k-th
character of the string by other characters. Thus, the correct alternatives are smaller in number than
those obtained by considering substitutions at every character position of the string. Moreover, the
generation of a smaller number of correct alternatives can be made much faster.

 In this paper we propose a technique of error detection that can pinpoint the error position in
a big majority of cases and thus reduce the number of correct alternatives to a large extent. The
approach is based on matching the string in the normal as well as a reversed dictionary the concept of
which is elaborated below. To the best of our knowledge no other work reported the detection of
error position and error type in a misspelled string. From this standpoint our effort is a pioneering
one.

 To make the system more powerful, this approach is combined with a phonetic similarity key
based approach where phonetically similar characters are mapped into a single symbol and a nearly-
phonetic dictionary is formed. Using this dictionary, the phonetic errors can be easily detected and
corrected.

 Our technique described here is developed for Bangla language but it can be applied to other
Indian languages as well. This paper is organized as follows: In Section 2 we report our survey on the
error pattern analysis of Bangla written corpus. It is noted that a major source of nonword error is due
to phonetically similar characters. In Section 3 an approach of phonetic similarity error correction is
described. The reversed-word dictionary based correction scheme is described is Section 4.

2. Nonword error pattern in Bangla corpus

Here we shall present only error pattern of hand-written and machine printed text since our aim is to
make a spell-checker for general use. We have also collected errors in the Bangla OCR system
developed by us. The analysis of error pattern and its applications in improving the OCR performance
will be discussed elsewhere. Since no speech recognition system on Bangla is available, no error
pattern study of such system is reported.

 At first, the hand-written text error pattern is considered here. To collect sufficient amount of
data, we have surveyed different schools and colleges and collected samples of answer scripts of
students at various levels of study like Secondary, Higher Secondary and Undergraduate. We have
gone through 10,315 scripts collected at random from different schools and colleges in West Bengal.
For studying phonetic spelling error, we have also collected samples of dictated notes given to
individuals at various levels like students, office clerks, teachers and others. Notes have been dictated
from different topics chosen from juvenile texts, stories and novels, books of science, geography,
history etc. and of course, from newspapers. In this way, text containing 1,51,62,317 words was
collected for our analysis.

 Every document was carefully scrutinized and the misspelled words were manually collected
and stored. Due to lack of conformity with valid words, we have rejected the words of length not
greater than four but having more than two errors and the words of length greater than four but
having more than three errors. We have also rejected illegible words in the written text.

4

 We have found that 1,24,431 words out of 1,51,62,317 words obtained from written texts
(answer-scripts and dictated notes) are misspelled or illegible. A major part of them containing
1,08,924 words (87.5% of total number of errors) fall in the category of non-word errors. This reveals
that in Bangla about 0.82% error occurs in written text, i.e. on an average, one error is found to occur
in every 122 words of written text for persons of higher secondary and college levels.

 For correct spelling of every word we have referred to the Samsad Bangla Abhidhan by
Sailendranath Biswas. Form the available data all the misspelled words are classified into word level
and sentence level error classes. Finally, the error patterns are formed at the character level.

 According to Damerau, non-word errors can be classified into four major types. They are
substitution error, deletion error, insertion error, and transposition error. The percentage of different
types of spelling error in Bangla is given in Table 1.

 Most of the misspellings take place by slips or omissions, like slips of matras (matra or
shirorekha is a horizontal line present at the upper part of many Bangla characters) or partial or
complete omission of vowel diacritical markers or some part of the diacritical markers. Wrong use of
vowel diacritical markers is also noticed. Wrong uses of characters, which are phonetically similar to
the correct ones, have also been observed. In the case of compound consonants (called yuktAksar in
Bangla), mistakes takes place are due to ignorance. We have observed a great deal of confusion in the
uses of long and short vowels. Aspirated and unaspirated consonants are also noted to be confounded.
A great deal of confusion has also been seen to occur in the use of dental and cerebral nasal
consonant. In Bangla cerebral nasal consonant has lost its actual pronunciation, and therefore, there is
hardly any difference between the pronunciation of dental and cerebral nasal consonants As a result
there is a chance of committing mistakes if proper spelling rules are not remembered. Similar
confusion is seen in the case of three sibilant sounds in Bangla (palatal, dental and cerebral).
Utterance of these characters are hardly differentiable. Our observation also reveals that the three trill
consonants (liquid r, cerebral R and aspirate Rh) are well confounded. From our observation it is
clear that most of the misspellings are due to

 (i) phonetic similarity of Bangla characters,
 (ii) the difference between the graphemic representation and phonetic utterances, and
 (iii) lack of proper knowledge of spelling rules.

 The details of error pattern analysis is provided in [15].

 Collection of machine generated corpus was a problem since Bangla typewriters are rarely
used (they are occasionally used in the preparation of judicial deeds and circulars in some courts of
law and in government offices). On the other hand, Bangla fonts are available in DTP software but
most of them are not compatible with ISCII format. So, samples for typographic error have been
collected from typed materials through computer keyboard by our workers. Samples are collected
from two types of text entry modes through computer keyboard, namely, transcript text typing and
dictational text typing. The work was by typists with different levels of efficiency namely, skilled,
semi-skilled and novice. All these data are generated at CVPR unit of ISI, Kolkata. The computers
(PCs) which we have used for this purpose are equipped with a special hardware device, the GIST
transcript Card, creating Indian language environment.

 We have collected 3,64,698 words from transcription text typing and 11,025 words from
dictational text typing. Out of a total of 3,75,723 words, 5335 words from are found misspelled, i.e.
about 1.42% of the collected typographic words are misspelled. This reveals that the average typing
speed and in the GIST environment, on an average one error occurs in every 70 typed Bangla words.
This error rate is rather higher than that found in hand-written text. A possible reason for this high
error rate is the extra effort the typist should exert in typing Bangla over an English keyboard. He has

5

to remember the map table of the English keyboard layout for Bangla scripts. Also, more than one
key stroke is needed for some Bangla basic characters, and for all compound characters. Furthermore,
errors are committed unintentionally due to some GIST card problems.

 During compilation, we rejected the words with more than three errors due to lack of their
conformity with the dictionary entries. Only 132 words are rejected. Note that, we did not consider
the transliterated foreign words in our study.

 In typography most of the errors are seen to occur at word level and they are mostly nonword
errors. In some cases, sentence level errors such as real-word errors, grammatical errors, run on
errors, split word errors etc. are also observed.

 Most nonword erros are caused by the accidental slip of f ingers on the keys which are
neighbours of the intended key. Also deletion is seen to occur when the intended key is not properly
hit. Accidental insertion of characters and transposition of two adjacent characters are also noted. In
most cases the errors occurs by the characters of neighbouring keys.

 In some cases, doubling of characters have been noticed. This type of errors which fall i n the
category of insertion type of errors resulted from simultaneous hitting of two adjacent keys, one of
which is the intended key. Run on errors result when the 'space bar' is not properly hit at the end of a
word. Split word error is just the reverse case of run on error.

 In addition to the above types of errors, some punctuation errors li ke missing stops
(purnacched), replacement of one punctuation mark by the other, incomplete quotation marks etc. are
found in our collected data.

 Similar to Bangla hand written misspelli ngs, it has been noted that in Bangla typographic
misspelli ngs, substitution occurs most frequently. Also, commitment of deletion and transposition is
noticeable while occurrence of insertion is remarkably high due to misplaced halant in compound
characters or due to GIST problems. The Table 2 shows the occurrence of four major types of
nonword errors. Again, detailed analysis of error pattern can be found in [15].

3. Phonetically similar character error correction

There are several vowels and consonants that are phonetically similar in Bangla language. They are: i
: I, r: R: Rh , j: y , n: N , S: s.: s, etc. Our approach is to represent each pair or triplet of these
characters by single codes. Using this coding we can convert a dictionary into a non-homophonous
one. Each entry in this modified dictionary Dc is attached with its corresponding valid wordforms.
There may be two or more homophonous valid words for some entries, although the number of such
words is small . Thus in Dc a representation bAni will correspond to two valid words bANI and bAni.
For a string of characters S to be spell -checked, it is corrected into its coded version as above and
searched in Dc. If there is no match in Dc then S is a wrong word and steps described in Section 4
should be followed to correct it. If there is a match then its corresponding valid words are compared
for spelli ng. If a valid word matches then S is a correct word. Otherwise, S is a wrong word.
However, its correction candidates are only those for which there is a match in phonetic
representation. So, the algorithm gives out those words as solution candidates.

 For example, suppose we encountered a string bAnI and wish to check it i f it is a valid word.
By phonetic similarity coded notation it can be converted into bAni. In Dc there is a match of bAni.
Now its corresponding valid words are bANI and bAni, none of which match with bAnI. So our
candidate bAnI is a wrong word. But the suggested corrected word is either bANI or bAni.

4. Reversed word dictionary and error correction

6

4.1 Reversed word dictionary

For a valid word, its reversed word is a string of characters in reversed sequence. Thus, the reversed
version of the words 'read' and 'copy' are the strings 'daer' and 'ypoc', respectively where the first
character of the word goes to the last position, the second character occupies the last but one position
and so on. In general, the reversed word of a word W = x1x2 ... xk is Wr = xkxk-1 ... x2x1.

 In a reversed word dictionary Dr, the reversed version of all dictionary words are maintained.
For quick access or retrieval, the words can be alphabetically ordered, partitioned in terms of word
length and maintained in indexed flat file or in trie structure. The dictionary structure for our purpose
can be indexed or trie depending on the system capabilit y. We have used trie structure for our
purpose, because it is computationally faster to access.

 The purpose of reversed word dictionary is to look for match of a string S backwords from
the last character. We shall show that search in conventional dictionary Dc as well as reversed word
dictionary together helps in finding the error position in S as well as in creating a small subset of
correction candidate words which indeed contains the intended word.

 Note that both forward and reversed word dictionary can be prepared using phonetic
alphabet, as discussed in Section 3. This helps us in tackling phonetically similar character
substitution error automatically.

4.2 Error detection and position finding

Here our aim is to detect the erroneous word and also to find the position in the word where the error
has occurred. To start with, we have the following assumptions. Later on, we shall examine how
much relaxation of the assumption No.1 can be tackled by our method.

Assumption 1: There can be only single error in the word which is one among insertion, deletion,
substitution and transposition.

Assumption 2: The correct word is available in both the dictionary (conventional and reversed

word) files.

 We treat the case of insertion and transposition separately from the deletion and substitution.
If the error is caused due to insertion (transposition), the correct word is deleted (transposed) string.
If there are n characters in a misspelled word, we can make n different strings by deleting one
character at a time. Similarly, n -1 strings can be generated by transposing one pair of neighbouring
characters. These 2n -1 strings may be checked in the conventional dictionary and the strings that are
valid words are included in the candidate set of correct words. The number of these words is not
large, since for n = 6 (which is more than average wordlength in many languages) 2n -1 is a small
number.

 However, string generation in this way to consider deletion and substitution is not
economical unless n = 1, 2 because for an alphabet size of N characters, 2nN strings may be
generated. A large number of these strings may be valid words, thereby increasing the number of
candidate set of correct words to a large extent. Here we propose an alternative approach guided by
conventional and reversed word dictionaries so that the candidate set is substantiall y reduced,
especially for large n. Moreover, we shall show that our approach can find, with reasonable accuracy,
the position in the string where the error has occurred.

7

 Consider, and erroneous string S of n characters. Suppose we try to match the string in
conventional dictionary Dc and check the dictionary word that matches at maximum number of
character positions, say k1 in a sequence starting from left. For example, let the erroneous string be
'forvune' where the error has occurred at 4-th position and the correct word is 'fortune'. In the
dictionary, there are several words with 'for...', but no word with 'forv...'. Thus, here k1 = 3.

 Note that since the error is a single substitution or deletion the correct word will li e in the
dictionary words of n and n + 1 characters. While searching in Dc and Dr, we look only for words of
length n and n + 1, unless otherwise stated.

 Now, the following proposition is true for any erroneous string S.

Proposition 1: If for an erroneous string S the longest substring match in conventional dictionary Dc
occurs for the first k1 characters then the error has occurred in the first k1 +1 character of S.

 Fig. 1. Error localization by conventional and
 reverse dictionary.

(a) Error localization by conventional dictionary.
(b) Error localization by reverse dictionary.
(c) Error localization when both dictionaries are

used.

 For an ill ustration of the proposition, see Fig.1(a). To prove the proposition, let it be false,
i.e. let the error be not in the first k1 + 1 characters. Since the first k1 + 1 characters are error-free,
then we could find at least one word in the dictionary, where the first k1 + 1 characters match with
those of the string S (ensured by the assumption 2 whereby the correct word is in the dictionary). This
is a contradiction, since the longest dictionary match occured for the first k1 characters and not for k1
+ 1 characters.

 If we use reversed word dictionary Dr for finding the longest match, then we can find, say the
last k2 characters matching with those of S and the error must have occurred within last k2 +1

k2

k1

Error Zone

Sl Si Sr

(a)

(b)

(c)

8

characters of S. The argument about this fact is in the same line as that of proposition 1. See also Fig.
1(b). We may consider the above inference as reversed dictionary version of proposition 1.

 Thus proposition 1 gives an idea of where the error has occurred in S. If k1 = 0 i.e. if there is
no valid word in the conventional dictionary whose first character is the same as that of S then the
error has occurred at (in case of substitution error) or before (in case of deletion error) the first
character - a perfect positioning of the error. To find correction candidate words we use the reversed
word dictionary and look for words whose tail end match with the character string of S excepting the
first character (which takes care of substitution error) and if possible, including the first character
(which takes care of deletion error). The set of candidate words is small if n is reasonably large say, n
≥ 3.

 If k2 = 0 i.e. there is no word whose last character matches with that of S then too we know
that the error occurred at or after the last character of S. The other characters of S are correct and we
can use them as key for selecting the correction candidate words, from the conventional dictionary.

 The above approach is effective, if k1 or k2 is small compared to n. We can use a rule of
thumb that if n - k1 > 2 or n - k2 > 2 then we use either conventional dictionary or reversed word
dictionary to find correction candidates. However, k1 or k2 may not be small, especially when the
error occurs at the middle position of the word. To take care of the situation we use the following
stronger proposition.

Proposition 2: If an erroneous string S the largest match in conventional dictionary occurs for the
first k1 characters and the longest match in the reversed word dictionary occurs for the last k2

characters, then the error has occurred at the intersection of the first k1 + 1 and the last k2 + 1
characters of S.

 For an illustration, see Fig. 1. To prove the proposition we note that if the error is outside the
intersection region then we could get a longer match either in conventional dictionary or in the
reversed word dictionary, which is a contradiction.

 Proposition 2 allows us to pinpoint the error in S to a large extent. To get an estimate about
the width of the intersection region, say Si, we made a simulation study on conventional dictionary of
55,000 words and its reversed word version. About one hundred words were randomly chosen.
Deletion and substitution error were generated at all positions of them, making about 30,000
erroneous strings. For each string S, its Si was detected. It was found that cardinality of Si is one
character (perfect pinpointing) in 41.36% cases, two characters in 32.96% cases, three characters in
16.58% cases. See Table 3.

Proposition 3: If | Si | = 1 the error occurred at Si must be due to substitution.

 To prove proposition 3 we note that here we are dealing with substitution and deletion error
(transposition and insertion error is already taken care of) and the error occurs at one position only.

 Now if a deletion error has occurred then the deleted character must have been immediately
to the left or to the right of Si. If the deleted character was to the right of Si, then Si is not erroneous
and starting from the left of S we could get a match for the substring upto and including Si in the
conventional dictionary. This is a contradiction and hence the error cannot be due to deleted character
to the right of Si. Similar argument holds about deletion to the left of Si. Therefore, the error is due to
substitution only.

 Thus according to proposition 3 we can not only pinpoint the error position in some cases, we
can also discover the type of error occurred in those cases.

9

 On the other hand, if | Si | = 2 the error may have occurred at the one of the two characters of
Si (substitution) or in between the two character (deletion). In general, if | Si | = m the error may have
occurred at one of the m characters of Si (substitution) or at one of the m -1 positions between
neighbouring characters of Si (deletion). Note that in the worst case | Si | = n + 2 is also possible.

4. 3. Error Correction

The region of S excluding Si is error-free. Let the error free region to the left and right of Si be Sl and
Sr, respectively (see Fig. 1(c)). Now, we can search in the dictionary for the words which matches
with Sl at the beginning and with Sr at the end. This candidate set must contain the correct word. If Si

is short compared to S (in number of characters) then the candidate set will also be small in number.

 Note that this approach can take care of multiple errors occurred within Si region if the
condition of checking only words having length n and n + 1 is relaxed. However, it cannot work if
one of the errors occurs in Sl or Sr regions and the other occurs in Si .

 If Si is large then a different approach may be used to contain the size of candidate set. This
approach is invoked if | Si | > n/2 . In the above condition, we take the first n/2 = m characters of S
and find the set W1 of all valid words in the dictionary whose first m characters match with them. We
also take the last n - m characters of S and find the set W2 of all valid words in the reversed word
dictionary whose last n - m characters match with them. Union of these two sets of valid words is the
candidate set which contains the (intended) correct word. This is certainly so because if the error has
occurred in the last half of S then the correct words belongs to W1. If the error is in the first half, then
the correct word belongs to W2. Note that either W1 or W2 but not both can be null subsets. Table 3
presents the results of error localization study

 The candidate set generated in this way can take care of multiple errors occurred either in the
first m or last n - m positions of S provided we do not put any wordlength constraint during dictionary
search. However, it cannot take care of the situation where one error occurs in the first m and other
error occurs in the last m characters.

 The algorithmic procedure of this approach is as follows. The string S is searched in the
conventional dictionary and if a perfect match is not found then S is declared as erroneous. The
longest substring match is detected and thus K1 is known.

 Generation of suggested words for correction is more difficult. For single error situation, we
know that error has occurred in the first K1 + 1 characters. Now, using the reversed word dictionary
we find K2, and subsequently compute Si. The error resides in Si region only.

 At first, we take care of insertion and transposition error. We create strings by deleting one
character at a time from Si portion of S. The number of strings generated in this way is | Si | and each
of them has length | S | - 1. These strings are searched in the conventional dictionary and if some of
them match with the dictionary word then they are accepted as the set of correction candidate words.
If an insertion error occurred then this set certainly contains the correct word. However, if the error is
of type other than insertion and if this set is not null (which is highly unlikely but not impossible)
then this set may not contain the intended word. Let this set of words be W1.

 To take care of transposition, we transpose the neighbouring pair of characters and generate
strings. Thus, at most n - 1 strings of length | S | are formed. The strings are searched in the
conventional dictionary and those matching with valid words are accepted. Let this set of words be
W2. If the error is transposition the W2 would contain the intended word. However, if the error is not
a transposition and if W2 is non-null then it may not contain the intended word.

10

 Now we consider the deletion and substitution errors. Note that if S is a string with deletion
error then its correct version must be found among words of length | S | +1. Similarly, correct version
of a substitution error must be a word of length | S |.

 If S is small, say | S | ≤ 3 then we adopt the following approach. Let | S | = 2 and S = x1x2.
Then we find all valid dictionary words of length 2 and 3 that either started with x1 or ended with x2.
Then this set must contain the intended word, if the error is either deletion or substitution. For | S | = 3
let S = x1x2x3. Then we find all valid dictionary words length 3 and 4 that (i) either started with x1x2
(ii) or has the first character x1 and x2 (iii) or has last two character x2 x3.

 In general, let W3 be the set of correction candidates obtained while considering the deletion
and insertion error. The size of W3 (i.e. the number of words in W3) can be made smaller by doing
additional check that the error occurred at only one character position. Thus, if a correction candidate
word say S′ differ from S at more than one character position the S′ is not included in W3. In this way,
some candidates of length | S | + 1 are deleted.

 If | Si | > | S | the we correct S according to Cases 1-3 described above.

 Now, let S be of large size, say | S | ≥ 4. If | Si | ≤ ½ | S | then we find the Sl and Sr and find the
candidates whose first characters are Sl and last characters are Sr and which satisfy the constraint that
the candidate S′ differ from S in single position only. If | S | ≤ | Si | ≥ ½ | S | then we partition S into
two segments Sl and Sr so that { | S′l | - | S′r | } 2 ≤ 1. Candidates are generated whose first characters
are S′l or last characters are S′r and which satisfy the constraint that the candidate S′ and S differ in
single position only. Here too, search is made among words of length | S | and | S + 1| only. The union
of W1, W2 and W3 must contain the intended word if the error is S has occurred in single position.

5. Bangla text error correction

Bangla is an inflectional language. A word in the text may contain rootword appended with suff ixes
(with a probabilit y of nearly 0.7). The distinct set of surface words may be 100 times those of
rootwords especially for nouns and verbs. Hence the dictionary size may be huge if all surface words
are maintained. Creation of new suff ixed and agglutinating words in this language is a relatively easy
task, and thus the dictionary can never be completed.

 So, we compiled our dictionaries with rootwords only. We maintained also several suff ix
files, each file containing suff ixes for a class of words depending on their grammatical and semantic
category.

 Consider now a candidate string S. If it is a valid word, then either it can be matched in Dc ,

which indicates that S is a rootword or part of S can be matched in Dc which indicates that S can be an
inflected word. In the later case the rest of S should be searched and matched in the appropriate suff ix
file. The phonetically similar character error can be tackled in a manner described in Section 3.

 Suppose S is not a valid word. If S contains single error then it has occurred at the suff ix or
rootword part. Thus, if we have a rootword match then the suff ix lexicon is searched. If a failure is
reported, attempt is made to correct the suff ix part. If no valid suff ix exists with unit edit distance
then the corrected version of S could be a rootword. Using Dc and Dr, the li st of possible correction
words are generated and their minimum edit distances are computed. Those having unit distance are
accepted as alternatives.

11

 If S does not match (fully) with the word in Dc, then at first alternatives are generated using
Dc and Dr. Those having unit distance are accepted as alternatives. If none is found then suff ix match
is attempted, which must succeed if S contains single error. Now again correction is attempted using
Dc and Dr on the rest of S.

 Some discussions on the suff ix files are in order. We have initiall y divided them into two
main groups namely verb and non-verb files. Among non-verbs, noun and adjective suff ix files are
further distinguished. For nouns, again case and non-case suff ix (e.g. plurality, gender etc.) are
distinguished. Even, animate, inanimate, human, non-human distinctions are made. Now, in the main
dictionary Dc, the parts-of-speech and other information about the word as well as the suff ix file it
should refer to, are maintained. Thus, when a part of S is matched in Dc as valid root word, the
pointers attached to the rootword points to the suff ix files that should be searched for a suff ix match
in S. In this way the search can be speeded up and false grammatical agreement between the rootword
and suff ix can also be detected. As a result, our spell -checker acts somewhat li ke a morphological
parser.

 Note that the scheme stated above can detect any error and correct single error accurately.
For multiple errors, correction (i.e. preserving a set of alternative words that must contain the
intended error) may not always be possible. In case no alternative words can be suggested, our
software returns 'no suggestion'.

6. Discussion

We have implemented our approach in PC under Windows-98 environment. The main dictionary of
about 60,000 rootwords are stored in the PC. To this another 100,000 inflected words are added.
These words occupy the top 100,000 positions in the word-frequency count of a corpus of 3 milli on
words obtained from various sources. These 80,000 words are maintained in a trie structure. The
reason of using 100,000 top-raking words is to avoid suff ix search as much as possible. Our
experience is that the system works fast if we use this scheme.

 We have an option of getting warning while entering the corpus. If an invalid character is
typed at certain positions of a word, a warning is issued. For example, only 90 compound characters
(out of about 280) can occupy the first position of a Bangla word. Also, no Bangla word contains a
character repeated thrice. Similarly, many bigrams are impossible in Bangla words. These and errors
li ke incomplete brackets, punctuation marks etc. are served with on-line warning.

 For off -line word error detection and correction we followed the format of WORDSTAR. A
temporary dictionary is maintained where the user may enter words which are not in the main
dictionary. The temporary dictionary takes care of proper nouns and specialised terms. The program
asks for the parts-of-speech of such words since in Bangla, they can also be inflected.

 While running on a corpus of 250,000 words we found that our system works with high
accuracy. The non-word errors are all correctly detected but the system makes about 5% of false error
detection. They are mainly due to conjunct words formed due to euphony and assimilation as well as
proper nouns in the corpus. We are planning to take care of euphony and assimilation in near future.

Acknowledgement: The author wish to thank Mr. P. K. Kundu of Vidyasagar College, Kolkata and
Mr. N.S. Dash of this department for providing the suff ix li st and for valuable discussions.

Reference

12

[1] R.C. Angell, G.E. Freund and P. Willet, (1983) "Automatic spelling corection using a

trigram similarity measure", Information Processing and Management. 19: 255-261.

[2] V. Cherkassky and N. Vassilas (1989) "Back-propagation networks for spelling correction".
Neural Network. 1(3): 166-173.

[3] K.W. Church and W.A. Gale (1991) "Probability scoring for spelling correction". Statistical
Computing. 1(1): 93-103.

[4] F.J. Damerau (1964) "A technique for computer detection and correction of spelling errors".
Commun. ACM. 7(3): 171-176.

[5] R.E. Gorin (1971) "SPELL: A spelling checking and correction program", Online
documentation for the DEC-10 computer.

[6] S. Kahan, T. Pavlidis and H.S. Baird (1987) "On the recognition of characters of any font
size", IEEE Trans. Patt. Anal. Machine Intell. PAMI-9. 9: 174-287.

[7] K. Kukich (1992) "Techniques for automatically correcting words in text". ACM Computing
Surveys. 24(4): 377-439.

[8] V.I. Levenshtein (1966) "Binary codes capable of correcting deletions, insertions and
reversals". Sov. Phys. Dokl., 10: 707-710.

[9] U. Pal and B.B. Chaudhuri (1995) "Computer recognition of printed Bangla script" Int. J. of
System Science. 26(11): 2107-2123.

[10] J.J. Pollock and A. Zamora (1984) "Automatic spelling correction in scientific and scholarly
text". Commun. ACM-27. 4: 358-368.

[11] P. Sengupta and B.B. Chaudhuri (1993) "A morpho-syntactic analysis based lexical
subsystem". Int. J. of Pattern Recog. and Artificial Intell. 7(3): 595-619.

[12] P. Sengupta and B.B. Chaudhuri (1995) "Projection of multi-worded lexical entities in an
inflectional language". Int. J. of Pattern Recog. and Artificial Intell. 9(6): 1015-1028.

[13] R. Singhal and G.T. Toussaint (1979) "Experiments in text recognition with the modified
Viterbi algorithm". IEEE Trans. Pattern Analysis Machine Intelligence. PAMI-1 4: 184-193.

[14] E.J. Yannakoudakis and D. Fawthrop (1983) "An Intelligent spelling corrector". Information
Processing and Management. 19(12): 101-108.

[15] P. Kundu and B.B. Chaudhuri (1999) "Error Pattern in Bangla Text". International Journal
of Dravidian Linguistics. 28(2): 49-88.

13

Type of error Percentage
Substitution error 66.32
Deletion error 21.88
Insertion error 6.53
Transposition error 5.27

Table 1: Percentage of various types of error in Bangla

Type of error Percentage

Substitution 66.90
Deletion 17.87
Insertion 9.60
Transposition 5.63

Table 2: Percentage of non-word error

Error zone length
(in no. of characters)

% of words

1 41.36
2 32.94
3 16.58
4 7.10
5 1.78
6 0.24

Error located at either
end of error zone

90.77

Table 3: Results of error localization study

