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Abstract 
 
 
 
A new novel technique of localisation and correction of non-word error is described. The technique 
works in two stages. The first stage takes care of phonetic similarity error. For that the phonetically 
similar characters are mapped into single units of character code. A new dictionary Dc is constructed 
with this reduced set of alphabet. A phonetically similar but wrongly spelt word can be easily 
corrected using this dictionary. The second stage takes care of errors other than phonetic similarity. 
Here wrongly spelt word S of n characters is searched in the dictionary Dc. If S is a non-word, its first 
k1 ≤ n characters will match with a valid word in Dc. (if k1 = n then the word in Dc must be longer 
than n). A reversed word dictionary Dr is also generated where the characters of the word are 
maintained in a reversed order. If the last k2 characters of S match with a word in Dr  then, for single 
error, it is located within the intersection region of first k1 + 1 and last k2 +1 characters of S. We 
observed that this region is very small compared to word length for most cases and the number of 
suggested correct words can be drastically reduced using this information. We have used our 
approach in correcting Bangla text, where the problem of inflection is cleverly tackled. 
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1.  Introduction 
 
The problem of detecting error in words and automatically correcting them is a great research 
challenge. Its solution has enormous application potentials in text and code editing, computer aided 
authoring, optical character recognition (OCR), machine translation (MT), natural language 
processing (NLP), database retrieval and information retrieval interface, speech recognition, text to 
speech and speech to text conversion, communication system for the disabled (e.g. blind and deaf), 
computer aided tutoring and language learning, desktop publication and pen-based computer 
interface. 
 
 The word-error can belong to one of the two distinct categories, namely, nonword error and 
real-word error. Let a string of characters separated by spaces or punctuation marks be called a 
candidate string. A candidate string is a valid word if it has a meaning. Else, it is a nonword. By real 
word error we mean a valid but not the intended word in the sentence, thus making the sentence 
syntactically or semantically ill-formed or incorrect. In both cases the problem is to detect the 
erroneous word and either suggest correct alternatives or automatically replace it by the appropriate 
word. 
 
 There are several issues to be addressed in the error correction problem. The first issue 
concerns the error patterns generated by different text generating media such as typewriter and 
computer keyboard, typesetting and machine printing, OCR system, speech recognizer output, and of 
course, handwriting. Usually, the error pattern of one media does not match with that of the other. 
The error pattern issue of each media concerns the relative abundance of insertion, deletion, 
substitution and transposition error, run-on and split word error, single versus multiple character 
error, word length effect, positional bias, character shape effect, phonetic similarity effect, heuristic 
tendencies etc. The knowledge about error pattern is necessary to model an efficient spell checker. 
 
 Another important issue is the computerized dictionary which concerns the size of the 
dictionary, the problem of inflection and creative morphology, the dictionary file structure, dictionary 
partitioning, word access techniques and so on. Dictionary look up is one of the two principal ways of 
spelling error detection and correction. The other approach, popularly used in OCR problems, is the 
N-gram approach. Construction of appropriate N-gram from raw text data is an important issue in this 
approach. 
 
 The detection of real word error needs higher level knowledge compared to the detection of 
nonword error. In fact, detection of real word error is a problem that needs NLP tools to solve. Quite 
often, it is not possible to separate the problem of real error detection from that of correction. 
 
 Even for nonword errors, correction is a nontrivial task. Several approaches based on 
minimum edit distance, similarity key, rules, N-grams, probability and neural nets are proposed to 
accomplish the task [1-8, 13, 14]. Of these, minimum edit distance based approaches are the most 
popular ones. The minimum edit distance is the minimum number of editing operations (insertions, 
deletions and substitutions) required to transform one text string into another. The distance is also 
referred to as Damerau-Levenshtein distance after the pioneers who proposed it for text error 
correction [4, 8]. In its original form, minimum edit distance algorithms require m comparisons 
between misspelled string and the dictionary of m words. After comparison, the words with minimum 
edit distance are chosen as correct alternatives. To improve the speed, a reverse minimum edit 
distance is used where a candidate set of words is produced by first generating every possible single-
error permutation of the misspelled string and then checking the dictionary if any make up valid 
word. For a brief description of other methods, see [7]. 
 
 Irrespective of the technique used, one of the aims of a spell-checker is to provide a small set 
of correct alternatives for an erroneous string which includes the intended word. If the number of 
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correct alternatives becomes one then the correction can be done automatically. Even if the number is 
small, it is manually convenient to choose the intended word form this small subset. 
 
 The set of correct alternatives can be drastically reduced if the error detection algorithm can 
pinpoint the position and nature of error (substitution or deletion etc.) occurred in the misspelled 
string. Consider the case of single position error. Suppose the error detection algorithm could find 
that the error has occurred at the k-th character position of a string.  Suppose it could also find that 
the error is a substitution type. Then we accept only those valid words formed by replacing k-th 
character of the string by other characters. Thus, the correct alternatives are smaller in number than 
those obtained by considering substitutions at every character position of the string. Moreover, the 
generation of a smaller number of correct alternatives can be made much faster. 
 
 In this paper we propose a technique of error detection that can pinpoint the error position in 
a big majority of cases and thus reduce the number of correct alternatives to a large extent. The 
approach is based on matching the string in the normal as well as a reversed dictionary the concept of 
which is elaborated below. To the best of our knowledge no other work reported the detection of 
error position and error type in a misspelled string. From this standpoint our effort is a pioneering 
one. 
 
 To make the system more powerful, this approach is combined with a phonetic similarity key 
based approach where phonetically similar characters are mapped into a single symbol and a nearly-
phonetic dictionary is formed. Using this dictionary, the phonetic errors can be easily detected and 
corrected. 
 
 Our technique described here is developed for Bangla language but it can be applied to other 
Indian languages as well. This paper is organized as follows: In Section 2 we report our survey on the 
error pattern analysis of Bangla written corpus. It is noted that a major source of nonword error is due 
to phonetically similar characters. In Section 3 an approach of phonetic similarity error correction is 
described. The reversed-word dictionary based correction scheme is described is Section 4. 
 
2.  Nonword error pattern in Bangla corpus 
 
Here we shall present only error pattern of hand-written and machine printed text since our aim is to 
make a spell-checker for general use. We have also collected errors in the Bangla OCR system 
developed by us. The analysis of error pattern and its applications in improving the OCR performance 
will be discussed elsewhere. Since no speech recognition system on Bangla is available, no error 
pattern study of such system is reported. 
 
 At first, the hand-written text error pattern is considered here. To collect sufficient amount of 
data, we have surveyed different schools and colleges and collected samples of answer scripts of 
students at various levels of study like Secondary, Higher Secondary and Undergraduate. We have 
gone through 10,315 scripts collected at random from different schools and colleges in West Bengal. 
For studying phonetic spelling error, we have also collected samples of dictated notes given to 
individuals at various levels like students, office clerks, teachers and others. Notes have been dictated 
from different topics chosen from juvenile texts, stories and novels, books of science, geography, 
history etc. and of course, from newspapers. In this way, text containing 1,51,62,317 words was 
collected for our analysis. 
 
 Every document was carefully scrutinized and the misspelled words were manually collected 
and stored. Due to lack of conformity with valid words, we have rejected the words of length not 
greater than four but having more than two errors and the words of length greater than four but 
having more than three errors. We have also rejected illegible words in the written text. 
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 We have found that 1,24,431 words out of  1,51,62,317 words obtained from written texts 
(answer-scripts and dictated notes) are misspelled or illegible. A major part of them containing 
1,08,924 words (87.5% of total number of errors) fall in the category of non-word errors. This reveals 
that in Bangla about 0.82% error occurs in written text, i.e. on an average, one error is found to occur 
in every 122 words of written text for persons of higher secondary and college levels. 
 
 For correct spelling of every word we have referred to the Samsad Bangla Abhidhan by 
Sailendranath Biswas. Form the available data all the misspelled words are classified into word level 
and sentence level error classes. Finally, the error patterns are formed at the character level. 
 
 According to Damerau, non-word errors can be classified into four major types. They are 
substitution error, deletion error, insertion error, and transposition error. The percentage of different 
types of spelling error in Bangla is given in Table 1. 
 
 Most of the misspellings take place by slips or omissions, like slips of matras (matra or 
shirorekha is a horizontal line present at the upper part of many Bangla characters) or partial or 
complete omission of vowel diacritical markers or some part of the diacritical markers. Wrong use of 
vowel diacritical markers is also noticed. Wrong uses of characters, which are phonetically similar to 
the correct ones, have also been observed. In the case of compound consonants (called yuktAksar  in 
Bangla), mistakes takes place are due to ignorance. We have observed a great deal of confusion in the 
uses of long and short vowels. Aspirated and unaspirated consonants are also noted to be confounded. 
A great deal of confusion has also been seen to occur in the use of dental and cerebral nasal 
consonant. In Bangla cerebral nasal consonant has lost its actual pronunciation, and therefore, there is 
hardly any difference between the pronunciation of dental and cerebral nasal consonants As a result 
there is a chance of committing mistakes if proper spelling rules are not remembered. Similar 
confusion is seen in the case of three sibilant sounds in Bangla (palatal, dental and cerebral). 
Utterance of these characters are hardly differentiable. Our observation also reveals that the three trill 
consonants (liquid r, cerebral R and aspirate Rh ) are well confounded. From our observation it is 
clear that most of the misspellings are due to  
 
 (i) phonetic similarity of Bangla characters,  
 (ii) the difference between the graphemic representation and phonetic utterances, and 
 (iii) lack of proper knowledge of spelling rules. 
 
 The details of error pattern analysis is provided in [15]. 
 
 Collection of machine generated corpus was a problem since Bangla typewriters are rarely 
used (they are occasionally used in the preparation of judicial deeds and circulars in some courts of 
law and in government offices). On the other hand, Bangla fonts are available in DTP software but 
most of them are not compatible with ISCII format. So, samples for typographic error have been 
collected from typed materials through computer keyboard by our workers. Samples are collected 
from two types of text entry modes through computer keyboard, namely, transcript text typing and 
dictational text typing. The work was by typists with different levels of efficiency namely, skilled, 
semi-skilled and novice. All these data are generated at CVPR unit of ISI, Kolkata. The computers 
(PCs) which we have used for this purpose are equipped with a special hardware device, the GIST 
transcript Card, creating Indian language environment.  
 
 We have collected 3,64,698 words from transcription text typing and 11,025 words from 
dictational text typing. Out of a total of 3,75,723 words, 5335 words from are found misspelled, i.e. 
about 1.42% of the collected typographic words are misspelled. This reveals that the average typing 
speed and in the GIST environment, on an average one error occurs in every 70 typed Bangla words. 
This error rate is rather higher than that found in hand-written text. A possible reason for this high 
error rate is the extra effort the typist should exert in typing Bangla over an English keyboard. He has 
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to remember the map table of the English keyboard layout for Bangla scripts. Also, more than one 
key stroke is needed for some Bangla basic characters, and for all compound characters. Furthermore, 
errors are committed unintentionally due to some GIST card problems. 
 
 During compilation, we rejected the words with more than three errors due to lack of their 
conformity with the dictionary entries. Only 132 words are rejected. Note that, we did not consider 
the transliterated foreign words in our study. 
 
 In typography most of the errors are seen to occur at word level and they are mostly nonword 
errors. In some cases, sentence level errors such as real-word errors, grammatical errors, run on 
errors, split word errors etc. are also observed. 
 
 Most nonword erros are caused by the accidental slip of f ingers on the keys which are 
neighbours of the intended key. Also deletion is seen to occur when the intended key is not properly 
hit. Accidental insertion of characters and transposition of two adjacent characters are also noted. In 
most cases the errors occurs by the characters of neighbouring keys. 
 
 In some cases, doubling of characters have been noticed. This type of errors which fall i n the 
category of insertion type of errors resulted from simultaneous hitting of two adjacent keys, one of 
which is the intended key. Run on errors result when the 'space bar' is not properly hit at the end of a 
word. Split word error is just the reverse case of run on error. 
 
 In addition to the above types of errors, some punctuation errors li ke missing stops 
(purnacched), replacement of one punctuation mark by the other, incomplete quotation marks etc. are 
found in our collected data. 
 
 Similar to Bangla hand written misspelli ngs, it has been noted that in Bangla typographic 
misspelli ngs, substitution occurs most frequently. Also, commitment of deletion and transposition is 
noticeable while occurrence of insertion is remarkably high due to misplaced halant in compound 
characters or due to GIST problems. The Table 2 shows the occurrence of four major types of 
nonword errors. Again, detailed analysis of error pattern can be found in [15]. 
 
3.  Phonetically similar character error correction 
 
There are several vowels and consonants that are phonetically similar in Bangla language. They are: i 
: I, r: R: Rh , j: y , n: N , S: s.: s, etc. Our approach is to represent each pair or triplet of these 
characters by single codes. Using this coding we can convert a dictionary into a non-homophonous 
one. Each entry in this modified dictionary Dc is attached with its corresponding valid wordforms. 
There may be two or more homophonous valid words for some entries, although the number of such 
words is small . Thus in Dc a representation bAni will correspond to two valid words bANI and bAni. 
For a string of characters S to be spell -checked, it is corrected into its coded version as above and 
searched in Dc. If there is no match in Dc then S is a wrong word and steps described in Section 4 
should be followed to correct it. If there is a match then its corresponding valid words are compared 
for spelli ng. If a valid word matches then S is a correct word. Otherwise, S is a wrong word. 
However, its correction candidates are only those for which there is a match in phonetic 
representation. So, the algorithm gives out those words as solution candidates. 
 
 For example, suppose we encountered a string bAnI and wish to check it i f it is a valid word. 
By phonetic similarity coded notation it can be converted into bAni. In Dc there is a match of bAni. 
Now its corresponding valid words are bANI and bAni, none of which match with bAnI. So our 
candidate bAnI is a wrong word. But the suggested corrected word is either bANI or bAni. 
 
4.  Reversed word dictionary and error correction 
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4.1 Reversed word dictionary 
 
For a valid word, its reversed word is a string of characters in reversed sequence. Thus, the reversed 
version of the words 'read' and 'copy' are the strings 'daer' and 'ypoc', respectively where the first 
character of the word goes to the last position, the second character occupies the last but one position 
and so on. In general, the reversed word of a word W = x1x2 ... xk is Wr = xkxk-1 ... x2x1. 
 
 In a reversed word dictionary Dr, the reversed version of all dictionary words are maintained. 
For quick access or retrieval, the words can be alphabetically ordered, partitioned in terms of word 
length and maintained in indexed flat file or in trie structure. The dictionary structure for our purpose 
can be indexed or trie depending on the system capabilit y. We have used trie structure for our 
purpose, because it is computationally faster to access. 
 
 The purpose of reversed word dictionary is to look for match of a string S backwords from 
the last character. We shall show that search in conventional dictionary Dc as well as reversed word 
dictionary together helps in finding the error position in S as well as in creating a small subset of 
correction candidate words which indeed contains the intended word. 
 
 Note that both forward and reversed word dictionary can be prepared using phonetic 
alphabet, as discussed in Section 3. This helps us in tackling phonetically similar character 
substitution error automatically. 
 
4.2 Error detection and position finding 
 
Here our aim is to detect the erroneous word and also to find the position in the word where the error 
has occurred. To start with, we have the following assumptions. Later on, we shall examine how 
much relaxation of the assumption No.1 can be tackled by our method. 
 

Assumption 1: There can be only single error in the word which is one among insertion, deletion, 
substitution and transposition. 

 
Assumption 2: The correct word is available in both the dictionary (conventional and reversed 

word) files. 
 
 We treat the case of insertion and transposition separately from the deletion and substitution. 
If the error is caused due to insertion (transposition), the correct word is deleted (transposed) string. 
If there are n characters in a misspelled word, we can make n different strings by deleting one 
character at a time. Similarly, n -1 strings can be generated by transposing one pair of neighbouring 
characters. These 2n -1 strings may be checked in the conventional dictionary and the strings that are 
valid words are included in the candidate set of correct words. The number of these words is not 
large, since for n = 6 (which is more than average wordlength in many languages) 2n -1 is a small 
number. 
 
 However, string generation in this way to consider deletion and substitution is not 
economical unless n = 1, 2 because for an alphabet size of N characters, 2nN strings may be 
generated. A large number of these strings may be valid words, thereby increasing the number of 
candidate set of correct words to a large extent. Here we propose an alternative approach guided by 
conventional and reversed word dictionaries so that the candidate set is substantiall y reduced, 
especially for large n. Moreover, we shall show that our approach can find, with reasonable accuracy, 
the position in the string where the error has occurred. 
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 Consider, and erroneous string S of n characters. Suppose we try to match the string in 
conventional dictionary Dc and check the dictionary word that matches at maximum number of 
character positions, say k1 in a sequence starting from left. For example, let the erroneous string be 
'forvune' where the error has occurred at 4-th position and the correct word is 'fortune'. In the 
dictionary, there are several words with 'for...', but no word with 'forv...'. Thus, here k1 = 3. 
 
 Note that since the error is a single substitution or deletion the correct word will li e in the 
dictionary words of n and n + 1 characters. While searching in Dc and Dr, we look only for words of 
length n and n + 1, unless otherwise stated. 
 
 Now, the following proposition is true for any erroneous string S. 
 
Proposition 1: If for an erroneous string S the longest substring match in conventional dictionary Dc 
occurs for the first k1 characters then the error has occurred in the first k1 +1 character of S. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                Fig. 1. Error localization by conventional and  
                                            reverse dictionary. 

(a) Error localization by conventional dictionary. 
(b) Error localization by reverse dictionary. 
(c) Error localization when both dictionaries are 

used. 
 
 
 
 For an ill ustration of the proposition, see Fig.1(a). To prove the proposition, let it be false, 
i.e. let the error be not in the first k1 + 1 characters. Since the first k1 + 1 characters are error-free, 
then we could find at least one word in the dictionary, where the first k1 + 1 characters match with 
those of the string S (ensured by the assumption 2 whereby the correct word is in the dictionary). This 
is a contradiction, since the longest dictionary match occured for the first k1 characters and not for k1 
+ 1 characters. 
 
 If we use reversed word dictionary Dr for finding the longest match, then we can find, say the 
last k2 characters matching with those of S and the error must have occurred within last k2 +1 

k2 

k1 

Error  Zone 

Sl Si Sr 

(a) 

(b) 

(c) 
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characters of S. The argument about this fact is in the same line as that of proposition 1. See also Fig. 
1(b). We may consider the above inference as reversed dictionary version of proposition 1. 
 
 Thus proposition 1 gives an idea of where the error has occurred in S. If k1 = 0 i.e. if there is 
no valid word in the conventional dictionary whose first character is the same as that of S then the 
error has occurred at (in case of substitution error) or before (in case of deletion error) the first 
character - a perfect positioning of the error. To find correction candidate words we use the reversed 
word dictionary and look for words whose tail end match with the character string of S excepting the 
first character (which takes care of substitution error) and if possible, including the first character 
(which takes care of deletion error). The set of candidate words is small if n is reasonably large say, n 
≥ 3. 
 
 If k2 = 0 i.e. there is no word whose last character matches with that of S then too we know 
that the error occurred at or after the last character of S. The other characters of S are correct and we 
can use them as key for selecting the correction candidate words, from the conventional dictionary. 
 
 The above approach is effective, if k1 or k2 is small compared to n. We can use a rule of 
thumb that if n - k1 > 2 or n - k2 > 2 then we use either conventional dictionary or reversed word 
dictionary to find correction candidates. However, k1 or k2 may not be small, especially when the 
error occurs at the middle position of the word. To take care of the situation we use the following 
stronger proposition. 
 
Proposition 2: If an erroneous string S the largest match in conventional dictionary occurs for the 
first k1 characters and the longest match in the reversed word dictionary occurs for the last k2 

characters, then the error has occurred at the intersection of the first k1 + 1 and the last k2 + 1 
characters of S. 
 
 For an illustration, see Fig. 1. To prove the proposition we note that if the error is outside the 
intersection region then we could get a longer match either in conventional dictionary or in the 
reversed word dictionary, which is a contradiction. 
 
 Proposition 2 allows us to pinpoint the error in S to a large extent. To get an estimate about 
the width of the intersection region, say Si, we made a simulation study on conventional dictionary of 
55,000 words and its reversed word version. About one hundred words were randomly chosen. 
Deletion and substitution error were generated at all positions of them, making about 30,000 
erroneous strings. For each string S, its Si was detected. It was found that cardinality of Si is one 
character (perfect pinpointing) in 41.36% cases, two characters in 32.96% cases, three characters in 
16.58% cases. See Table 3. 
 
Proposition 3: If | Si | = 1 the error occurred at Si must be due to substitution. 
 
 To prove proposition 3 we note that here we are dealing with substitution and deletion error 
(transposition and insertion error is already taken care of) and the error occurs at one position only. 
 
 Now if a deletion error has occurred then the deleted character must have been immediately 
to the left or to the right of Si. If the deleted character was to the right of Si, then Si is not erroneous 
and starting from the left of S we could get a match for the substring upto and including Si in the 
conventional dictionary. This is a contradiction and hence the error cannot be due to deleted character 
to the right of Si. Similar argument holds about deletion to the left of Si. Therefore, the error is due to 
substitution only. 
 
 Thus according to proposition 3 we can not only pinpoint the error position in some cases, we 
can also discover the type of error occurred in those cases. 
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 On the other hand, if | Si | = 2 the error may have occurred at the one of the two characters of 
Si (substitution) or in between the two character (deletion). In general, if | Si | = m the error may have 
occurred at one of the m characters of Si (substitution) or at one of the m -1 positions between 
neighbouring characters of Si (deletion). Note that in the worst case | Si | = n + 2 is also possible. 
 
4. 3.  Error Correction 
 
The region of S excluding Si is error-free. Let the error free region to the left and right of Si be Sl and 
Sr, respectively (see Fig. 1(c)). Now, we can search in the dictionary for the words which matches 
with Sl at the beginning and with Sr at the end. This candidate set must contain the correct word. If Si 

is short compared to S (in number of characters) then the candidate set will also be small in number. 
 
 Note that this approach can take care of multiple errors occurred within Si region if the 
condition of checking only words having length n and n + 1 is relaxed. However, it cannot work if 
one of the errors occurs in Sl or Sr regions and the other occurs in Si . 
 
 If Si   is large then a different approach may be used to contain the size of candidate set. This 
approach is invoked if | Si | > n/2 . In the above condition, we take the first n/2 = m characters of S 
and find the set W1 of all valid words in the dictionary whose first m characters match with them. We 
also take the last n - m  characters of S and find the set W2 of all valid words in the reversed word 
dictionary whose last n - m characters match with them. Union of these two sets of valid words is the 
candidate set which contains the (intended) correct word. This is certainly so because if the error has 
occurred in the last half of S then the correct words belongs to W1. If the error is in the first half, then 
the correct word belongs to W2. Note that either W1 or W2 but not both can be null subsets. Table 3 
presents the results of error localization study 
 
 The candidate set generated in this way can take care of multiple errors occurred either in the 
first m or last n - m positions of S provided we do not put any wordlength constraint during dictionary 
search. However, it cannot take care of the situation where one error occurs in the first m and other 
error occurs in the last m characters. 
 
 The algorithmic procedure of this approach is as follows. The string S is searched in the 
conventional dictionary and if a perfect match is not found then S is declared as erroneous. The 
longest substring match is detected and thus K1 is known. 
 
 Generation of suggested words for correction is more difficult. For single error situation, we 
know that error has occurred in the first K1 + 1 characters. Now, using the reversed word dictionary 
we find K2, and subsequently compute Si. The error resides in Si  region only. 
 
 At first, we take care of insertion and transposition error. We create strings by deleting one 
character at a time from Si   portion of S. The number of strings generated in this way is | Si | and each 
of them has length | S | - 1. These strings are searched in the conventional dictionary and if some of 
them match with the dictionary word then they are accepted as the set of correction candidate words. 
If an insertion error occurred then this set certainly contains the correct word. However, if the error is 
of type other than insertion and if this set is not null (which is highly unlikely but not impossible) 
then this set may not contain the intended word. Let this set of words be W1. 
 
 To take care of transposition, we transpose the neighbouring pair of characters and generate 
strings. Thus, at most n - 1 strings of length | S | are formed. The strings are searched in the 
conventional dictionary and those matching with valid words are accepted. Let this set of words be 
W2. If the error is transposition the W2 would contain the intended word. However,  if the error is not 
a transposition and if W2 is non-null then it may not contain the intended word. 
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 Now we consider the deletion and substitution errors. Note that if S is a string with deletion 
error then its correct version must be found among words of length | S | +1. Similarly, correct version 
of a substitution error must be a word of length | S |. 
 
 If S is small, say | S | ≤ 3 then we adopt the following approach. Let | S | = 2 and S = x1x2. 
Then we find all valid dictionary words of length 2 and 3 that either started with x1 or ended with x2. 
Then this set must contain the intended word, if the error is either deletion or substitution. For | S | = 3 
let S = x1x2x3. Then we find all valid dictionary words length 3 and 4 that (i) either started with x1x2 
(ii) or has the first character x1 and x2 (iii) or has last two character x2 x3. 
 
 In general, let W3 be the set of correction candidates obtained while considering the deletion 
and insertion error. The size of W3 (i.e. the number of words in W3) can be made smaller by doing 
additional check that the error occurred at only one character position. Thus, if a correction candidate 
word say S′ differ from S at more than one character position the S′ is not included in W3. In this way, 
some candidates of length | S | + 1 are deleted. 
 
 If | Si | > | S | the we correct S according to Cases 1-3 described above. 
 
 Now, let S be of large size, say | S | ≥ 4. If | Si | ≤ ½ | S | then we find the Sl and Sr and find the 
candidates whose first characters are Sl and last characters are Sr and which satisfy the constraint that 
the candidate S′ differ from S in single position only. If | S | ≤ | Si | ≥  ½ | S | then we partition S into 
two segments Sl and Sr so that { | S′l  | - | S′r | } 2 ≤ 1. Candidates are generated whose first characters 
are S′l or last characters are S′r and which satisfy the constraint that the candidate S′ and S differ in 
single position only. Here too, search is made among words of length | S | and | S + 1| only. The union 
of W1, W2 and W3 must contain the intended word if the error is S has occurred in single position. 
 
5.  Bangla text error correction 
 
Bangla is an inflectional language. A word in the text may contain rootword appended with suff ixes 
(with a probabilit y of nearly 0.7). The distinct set of surface words may be 100 times those of 
rootwords especially for nouns and verbs. Hence the dictionary size may be huge if all surface words 
are maintained. Creation of new suff ixed and agglutinating words in this language is a relatively easy 
task, and thus the dictionary can never be completed. 
 
 So, we compiled our dictionaries with rootwords only. We maintained also several suff ix 
files, each file containing suff ixes for a class of words depending on their grammatical and semantic 
category. 
 
 Consider now a candidate string S. If it is a valid word, then either it can be matched in Dc , 

which indicates that S is a rootword or part of S can be matched in Dc which indicates that S can be an 
inflected word. In the later case the rest of S should be searched and matched in the appropriate suff ix 
file. The phonetically similar character error can be tackled in a manner described in Section 3. 
 
 Suppose S is not a valid word. If S contains single error then it has occurred at the suff ix or 
rootword part. Thus, if we have a rootword match then the suff ix lexicon is searched. If a failure is 
reported, attempt is made to correct the suff ix part. If no valid suff ix exists with unit edit distance 
then the corrected version of S could be a rootword. Using Dc and Dr, the li st of possible correction 
words are generated and their minimum edit distances are computed. Those having unit distance are 
accepted as alternatives. 
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 If S does not match (fully) with the word in Dc, then at first alternatives are generated using 
Dc and Dr. Those having unit distance are accepted as alternatives. If none is found then suff ix match 
is attempted, which must succeed if S contains single error. Now again correction is attempted using 
Dc and Dr on the rest of S. 
 
 Some discussions on the suff ix files are in order. We have initiall y divided them into two 
main groups namely verb and non-verb files. Among non-verbs, noun and adjective suff ix files are 
further distinguished. For nouns, again case and non-case suff ix (e.g. plurality, gender etc.) are 
distinguished. Even, animate, inanimate, human, non-human distinctions are made. Now, in the main 
dictionary Dc, the parts-of-speech and other information about the word as well as the suff ix file it 
should refer to, are maintained. Thus, when a part of S is matched in Dc as valid root word, the 
pointers attached to the rootword points to the suff ix files that should be searched for a suff ix match 
in S. In this way the search can be speeded up and false grammatical agreement between the rootword 
and suff ix can also be detected. As a result, our spell -checker acts somewhat li ke a morphological 
parser. 
 
 Note that the scheme stated above can detect any error and correct single error accurately. 
For multiple errors, correction (i.e. preserving a set of alternative words that must contain the 
intended error) may not always be possible. In case no alternative words can be suggested, our 
software returns 'no suggestion'. 
 
6.  Discussion 
 
We have implemented our approach in PC under Windows-98 environment. The main dictionary of 
about 60,000 rootwords are stored in the PC. To this another 100,000 inflected words are added. 
These words occupy the top 100,000 positions in the word-frequency count of a corpus of 3 milli on 
words obtained from various sources. These 80,000 words are maintained in a trie structure. The 
reason of using 100,000 top-raking words is to avoid suff ix search as much as possible. Our 
experience is that the system works fast if we use this scheme. 
 
 We have an option of getting warning while entering the corpus. If an invalid character is 
typed at certain positions of a word, a warning is issued. For example, only 90 compound characters 
(out of about 280) can occupy the first position of a Bangla word. Also, no Bangla word contains a 
character repeated thrice. Similarly, many bigrams are impossible in Bangla words. These and errors 
li ke incomplete brackets, punctuation marks etc. are served with on-line warning. 
 
 For off -line word error detection and correction we followed the format of WORDSTAR. A 
temporary dictionary is maintained where the user may enter words which are not in the main 
dictionary. The temporary dictionary takes care of proper nouns and specialised terms. The program 
asks for the parts-of-speech of such words since in Bangla, they can also be inflected. 
 
 While running on a corpus of 250,000 words we found that our system works with high 
accuracy. The non-word errors are all correctly detected but the system makes about 5% of false error 
detection. They are mainly due to conjunct words formed due to euphony and assimilation as well as 
proper nouns in the corpus. We are planning to take care of euphony and assimilation in near future. 
 
Acknowledgement: The author wish to thank Mr. P. K. Kundu of Vidyasagar College, Kolkata and 
Mr. N.S. Dash of this department for providing the suff ix li st and for valuable discussions. 
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Type of error   Percentage 
Substitution error 66.32 
Deletion error  21.88 
Insertion error  6.53 
Transposition error 5.27 

 
Table 1: Percentage of various types of error in Bangla 

 
 

 
Type of error Percentage 

Substitution 66.90 
Deletion 17.87 
Insertion 9.60 
Transposition 5.63 

 
Table 2: Percentage of non-word error 

 
 

Error zone length 
(in no. of characters) 

% of words 

1 41.36 
2 32.94 
3 16.58 
4 7.10 
5 1.78 
6 0.24 

Error located at either 
end of error zone 

90.77 

 
Table 3: Results of error localization study 

 


